MATH 350: Practice Exam 3

1. Let $f(y)=\frac{3}{14}\left(y^{2}+1\right)$ where $0<y<2$. Find $P(Y>1 \mid Y<1.5)$

$$
\begin{aligned}
P(Y>1 \mid Y<1.5) & =\frac{P(Y>1 \cap Y<1.5)}{P(Y<1.5)}=\frac{P(1<Y<1.5)}{P(Y<1.5)} \\
& =\int_{1}^{1.5} \frac{3}{14}\left(y^{2}+1\right) \div \int_{0}^{1.5} \frac{3}{14}\left(y^{2}+1\right)
\end{aligned}
$$

```
fn <- function(y){(3/14)*(y`{2}+1)}
```

p.btwn.1.and.1.5 <- integrate(fn, lower = 1, upper= 1.5)
p.lt.1.5 <- integrate(fn, lower = 0, upper= 1.5)
p.btwn.1.and.1.5\$value / p.lt.1.5\$value
\#\# [1] 0.4920635
2. Suppose that a random variable X has a pdf $3 x^{2}$ from $0<x<1$. Compute the cdf.

$$
F(X)=\int_{0}^{x} 3 t^{2} d t=\left.t^{3}\right|_{0} ^{x}=x^{3}
$$

3. Is the following function a valid pdf? $f(x)=\frac{1}{12} x+\frac{1}{4}$ where $2<x<4$. Explain your answer.

Check 1: Does $f(x)$ integrate to 1 over the domain of support?

```
pdf <- function(x){1/12*x + 1/4}
integrate(pdf, 2, 4)
```

\#\# 1 with absolute error < 1.1e-14
Check 2: Are all $f(x)>0$?

```
x <- seq(2, 4, length.out=100)
f.x <- pdf(x)
plot(x, f.x, type = 'l')
```


Yes. The function integrates to 1 over its domain of support. Since this is a linear function with a positive intercept and slope over the domain, it will always stay positive.
4. If Y has pdf $f(y)=4 y-1$ where $0<\mathrm{y}<1$ and $Z=2 y^{2}$. Find $\operatorname{Var}(Z)$.

$$
\begin{aligned}
E(Z) & =\int_{0}^{1} 2 y^{2} *(4 y-1) d y \\
& =\int_{0}^{1} 8 y^{3}-2 y^{2} d y \\
& =\frac{8}{4} y^{3}-\left.\frac{2}{3} y^{3}\right|_{0} ^{1} \\
& =2-\frac{2}{3}=\frac{4}{3}
\end{aligned}
$$

fun1 <- function(y) $\left\{\left(2 * y^{\wedge} 2\right) *(4 * y-1)\right\}$
(E_Z <- integrate(fun1, 0, 1))
\#\# 1.333333 with absolute error < 1.5e-14

$$
\begin{aligned}
E\left(Z^{2}\right) & =\int_{0}^{1}\left(2 y^{2}\right)^{2} *(4 y-1) d y \\
& =\int_{0}^{1} 16 y^{4}-4 y^{4} d y \\
& =\frac{16}{6} y^{6}-\left.\frac{4}{5} y^{5}\right|_{0} ^{1} \\
& =\frac{80}{30}-\frac{24}{30}=\frac{28}{15}
\end{aligned}
$$

fun2 <- function(y) $\left\{\left(2 * y^{\wedge} 2\right)^{\wedge} 2 *(4 * y-1)\right\}$
(E_Zsq <- integrate(fun2, 0, 1))
\#\# 1.866667 with absolute error < 2.1e-14

$$
\operatorname{Var}(Z)=E\left(Z^{2}\right)-E(Z)^{2}=\frac{28}{15}-\frac{16}{9}=0.89
$$

E_Zsq\$value - E_Z\$value^2
\#\# [1] 0.08888889
5. Fueleconomy.gov, the official US government source for fuel economy information, allows users to share gas milage information on their vehicles. A large sample of data 2012 Toyota Prius drivers who entered data on this site showed that MPG was approximately normally distributed with an average of 53.3 MPG and a standard deviation of 5.2 MPG.

For part b-d, write what you are trying to find in math notation, write the R code for the theoretical answer, and if the question is asking you to find a probability also write the simulation code.
a. Define a random variable X and write its distributional notation.

Let X be the MPG of a 2012 Toyota Prius. $X \sim N(53.3,5.2)$
mpg <- rnorm(10000, 53.3, 5.2)
b. The EPA claims that a typical 2012 Prius gets at least 50MPG. What is the probability that the EPA's estimate is accurate?

Find: $P(X>50)$
1-pnorm(50, 53.3, 5.2)
\#\# [1] 0.7371604
mean (mpg>50)
\#\# [1] 0.7298
c. How likely is it that a randomly selected 2012 Prius gets less than 48MPG?

Find: $P(X<48)$
pnorm(48, 53.3, 5.2)
\#\# [1] 0.1540467
mean (mpg < 48)
\#\# [1] 0.1573
d. A car should be checked out for problems if is getting an MPG in the bottom 5% of all cars like it. At what MPG should we start to worry?
Find t such that $P(X<t)=.05$

```
qnorm(.05, 53.3, 5.2)
## [1] 44.74676
```

